
Modern Assembly Language Programming
with the

ARM processor
Chapter 8: Non-Integral Mathematics

1 Base Conversion of Nonintegral Numbers

2 Fixed Point Calculations

3 Fixed Point Multiplication and Division

4 Fixed Point Sine and Cosine

5 Floating Point

6 Algorithms for Floating Point

7 Algorithms for Floating Point

Converting Fractions in Any Base to Decimal

The value 101.01012 can be converted to base ten by expanding it as follows:

1×22 +0×21 +1×20 +0×2−1 +1×2−2 +0×2−3 +1×2−4

= 4+0+1+0+ 1
4
+0+ 1

16
= 5.312510

Likewise, the hexadecimal fraction 4F2.9A0 can be converted to base ten by
expanding it as follows:

4×162 +15×161 +2×160 +9×16−1 +10×16−2 +0×16−3

= 1024+240+2+ 9
16

+ 10
256

+ 0
4096

= 1266.601562510

Converting Decimal Fractions to Binary

The integer part is converted by repeated division (Chapter 1).

The fractional part is converted by repeated multiplication.

Example: Convert the decimal value 5.625 to a binary representation. The integer
part is 1012.

1 Multiply the decimal fraction by two. The integer part of the result is the first
binary digit to the right of the radix point.
Because .625×2= 1.25, the first binary digit to the right of the point is a 1. So
far, we have .62510 = .12

2 Disregard the integer portion and multiply by 2 once again.
Because .25×2= 0.50, the second binary digit to the right of the point is a 0. So
far, we have .62510 = .102

3 Disregard the integer portion and multiply by 2 once again.
Because .50×2= 1.00, the third binary digit to the right of the point is a 1. So
now we have .625= .101

4 Disregard the integer portion. Since that leaves us with 0.0, we know that all
remaining digits will be zero.

5.62510 = 101.1012

Nonterminating (Repeating) Binary Fractions

In Radix Notation there are some fractions that repeat and never terminate.
Example: The binary representation of the decimal fraction 1/10 is a non-terminating

repeating fraction.

.1×2 = 0.2

.2×2 = 0.4

.4×2 = 0.8

.8×2 = 1.6

.6×2 = 1.2

.2×2 = 0.4

The last step is exactly the same as the second step.

If we continue, we will repeat the sequence of steps 2-5 forever.

Hence, the final binary representation will be.

0.110 = .00011001100110011. . .2

0.110 = .000112

Nonterminating Binary Fractions - How Many?

Question: Are there, in some sense of the word, more nonterminating decimals than
binimals, more nonterminating binimals than decimals, or neither?

Answer: Obviously, since both are infinite sets, in one sense of the word, the
answer is neither. But that is an oversimplification.

If we ask our question differently, we can discover some important information.

Question: Is the set of terminating decimals a subset of the set of terminating
binimals, or vice versa, or neither.

Answer: The set of terminating binimals is a subset of the set of terminating
decimals, but the set of terminating decimals is not a subset of the set of
terminating binimals.

Nonterminating Binary Fractions - Lemma

Lemma

If x, 0< x< 1, terminates in some base B (a product of primes), then x= Nx
Dx

, and

Dx = pk1
1 pk2

2 . . .pkn
n , where the pi are the prime factors of B.

Proof.

Let x= Nx
Dx

, and Dx = pk1
1 pk2

2 . . .pkn
n , where the pi are the prime factors of B. Then

Dx |Nx ×Bkmax , where kmax =max(k1,k2, . . .kn), so x= Nx
Dxx terminates after kmax or

fewer divisions.

Let x= Nx
Dx

terminate after k divisions. Then Dx |Nx ×Bk. Since Dx does not evenly
divide Nx, Dx must be composed of some combination of the prime factors of B. Thus,
Dx can be expressed as pk1

1 pk2
2 . . .pkn

n .

Nonterminating Binary Fractions - Theorem

Theorem
The set of terminating binimals is a subset of the set of terminating decimals, but the
set of terminating decimals is not a subset of the set of terminating binimals.

Proof.

Let b be a terminating binimal. Then, by the Lemma on the previous slide, b= Nb
Db

,

such that Db = 2k, for some k≥ 0. Therefore, Db = 2k5m, for some k,m> 0, and again
by the Lemma, b, is also a terminating decimal.

Nonterminating Binary Fractions - Examples

Let B= 30= 2∗3∗5. Then any number with denominator 2k1 3k2 5k3 terminates in
base B.

For example, 11
15 will terminate in base 30 after one division since 15= 3151.

To see what the number will look like, let’s extend the hexadecimal system of using
letters to represent digits beyond 9. So we get this chart for base 30:

10−A 12−C 14−E 16−G 18−I 20−K 22−M 24−O 26−Q 28−S
11−B 13−D 15−F 17−H 19−J 21−L 23−N 25−P 27−R 29−T

Since 11
15 = 22

30 , it is 0.M30.

What is 13
45 in base 30? Since 45= 3351, this number will have two digits following the

radix point. To compute the value, we will have to raise it to higher terms, using 302

as the denominator:
13
45

= 260
900

.

260
30 = 8 with remainder 20, so 13

45 = 0.8K30.

Nonterminating Binary Fractions - Bottom Line

Since the set of terminating binimals is a subset
of the set of terminating decimals,

but not vice versa:

there are terminating fractions in base 10 which do not terminate in base 2, but

all fractions that terminate in base 2 will also terminate in base 10.

No number system is immune from this problem. There are fractions in base 30, for
example, which do not terminate.
Changing the base of the computer’s number system is not the answer.

Fixed Point Numbers

Given a finite number of bits, a computer can only approximately represent
nonintegral numbers.

Some computers have no hardware support for nonintegral calculations.

Real numbers can be represented as fixed point numbers.

U(7,9)
15

0
14

0
13

1
12

0
11

1
10

1
9

1
8

0
7

0
6

0
5

1
4

0
3

1
2

0
1

1
0

1

Integer
Part

Fractional
Part

Radix
Point

S(9,6)
15

0
14

0
13

1
12

0
11

1
10

1
9

1
8

0
7

0
6

0
5

1
4

0
3

1
2

0
1

1
0

1

Integer
Part

Fractional
Part

Radix
Point

Sign

Fixed Point Numbers Continued

Sometimes it is useful to represent a negative number of bits in the integer part.

U(−8,16) 0 0 0 0 0 0 0 0
15

f
14

f
13

f
12

f
11

f
10

f
9

f
8

f
7

f
6

f
5

f
4

f
3

f
2

f
1

f
0

f

Fractional
Part

Radix
Point

S(−7,16) s s s s s s
15

s
14

f
13

f
12

f
11

f
10

f
9

f
8

f
7

f
6

f
5

f
4

f
3

f
2

f
1

f
0

f

Fractional
Part

Radix
Point

Sign

Size and Radix Point

The combination of size and radix will affect several properties.

Precision: the maximum number of non-zero bits representable,

Resolution: the smallest non-zero magnitude representable,

Accuracy: the magnitude of the maximum difference between a true real
value and it’s approximate representation,

Range: the diffence between the greatest and smallest number that can be
represented,

Dynamic range: the ratio of the maximum absolute value, and and the minimum
positive absolute value representable.

Size and Radix Point – Example

S(9,6)
15

0
14

0
13

1
12

0
11

1
10

1
9

1
8

0
7

0
6

0
5

1
4

0
3

1
2

0
1

1
0

1

Integer
Part

Fractional
Part

Radix
Point

Sign

Precision: 16 bits

Resolution: A= 2−6 = 0.015625

Accuracy: A= R
2 = 0.0078125

Range: Minimum value is 1111111111.111111=−1024
Maximum value is 0111111111.111111= 1023.9921875
Range is 1023.9921875+1024= 2047.9921875

Dynamic range: For a signed fixed-point rational representation, S(a,b), the
dynamic range is

2× 2a

2−b = 2a+b+1 = 2N 216 = 65536

Adding and Subtracting

Fixed point addition and subtraction work exactly like their integer counterparts.

2 . 2 5
+ 1 . 5 0

3 . 7 5

=
0 0 0 1 0 . 0 1 0

+ 0 0 0 0 1 . 1 0 0
0 0 0 1 1 . 1 1 0

1 1 . 1 2 5
− 5 . 6 2 5

5 . 5 0 0

=
0 1 0 1 1 . 0 0 1

+ 1 1 0 1 0 . 0 1 1
0 0 1 0 1 . 1 0 0

−1 2 . 3 7 5
+ 5 . 2 5 0
− 7 . 1 2 5

=
1 0 0 1 1 . 1 0 1

+ 0 0 1 0 1 . 0 1 0
1 1 0 0 0 . 1 1 1

In fact, integer math is just fixed point with no bits in the fractional part.

Multiplication

The result of multiplying an n bit number by an m bit number
is an n+m bit number

3 . 7 5
× 2 . 5 0

. 0 0 0 0
1 . 8 7 5
7 . 5 0
9 . 3 7 5 0

=

0 0 0 1 1 . 1 1 0
× 0 0 0 1 0 . 1 0 0
0 0 0 1 . 1 1 1 0

0 0 0 1 1 1 . 1 0
0 0 0 0 0 0 1 0 0 1 . 0 1 1 0 0 0

Note that the radix point in the result has shifted.

The result of multiplying two numbers S(a1,b1) and S(a2,b2)
is an S(a1 +a2 +1,b1 +b2) number.

Fixed point multiplies may be followed by an appropriate shift.

Fixed Point Multiplication Result Formats

Unsigned Multiplication
The result of multiplying two unsigned numbers U(i1, f1) and U(i2, f2)
is a U(i1 + i2, f1 + f2) number.

Mixed Multiplication
The result of multiplying a signed number S(i1, f1) and an unsigned
number U(i2, f2) is an S(i1 + i2, f1 + f2) number.

Signed Multiplication
The result of multiplying two signed numbers S(i1, f1) and S(i2, f2) is
an S(i1 + i2 +1, f1 + f2) number.

Fixed Point Multiplication on ARM

1 @@ Multiply two S(10,5) numbers
2 mul r0,r1,r2 @ x = a * b -> S(21,10)
3

4 @@ Multiply two U(12,4) numbers and produce a U(12,4)
5 mul r3,r4,r5 @ x = a * b -> U(24,8)
6 lsr r3,r3,#4 @ shift back to U(12,4)
7

8 @@ Multiply two S(16,15) numbers a produce an S(16,15)
9 smull r0,r1,r2,r3 @ x = a * b -> S(33,30)

10 lsr r0,r0,#17 @ get 15 bits from r0
11 orr r0,r1,lsl #15 @ combine with 17 bits from r1
12

13 @@ Multiply two U(10,22) numbers
14 umull r0,r1,r2,r3 @ x = a * b -> U(20,44)

Division

Given a dividend, N, with format U(i1, f1) and a divisor, D, with format U(i2, f2).

The value of the least significant bit of N is 2−fi and the value of the least significant
bit of D is 2−f2 .

In order to perform the division using integer operations, it is necessary to multiply N
by 2fi and multiply D by 2f2 so that both numbers are integers. Therefore the division
operation can be written as:

Q= N×2f1

D×2f2
= N

D
×2f1−f2 .

Example: Given two U(5,3) numbers:

Q= N×23

D×23 = N
D

×20.

If the programmer wants to have fr fractional bits in the result, then the dividend
must be shifted left an additional fr bits before the division.

Division Example

For example, suppose the programmer wants to divide 01001.011 stored as a U(28,3)
by 00011.110 which is also stored as a U(28,3), and wishes to have six fractional bits
in the result. The programmer would first shift 01001.011 to the left by six bits, then
perform the division and compute the position of the radix in the result as shown:

01001.011÷00011.110= (0000001001011000000÷00011110)×2−6−3+3

10100000
11110

)
1001011000000

111100000000
1111000000
1111000000

0

×2−6 = 10.100000

Division Result Formats

Consider:
The largest possible value of the dividend is Nmax = 2i1 −2−f1 , and the smallest
positive value for the divisor is Dmin = 2−f2 . Therefore, the maximum quotient is
given by:

Qmax = 2i1 −2−f1

2−f2
= 2i1+f2 −2f1−f2 .

Taking the limit of the previous equation,

lim
f1−f2→−∞

Qmax = 2i1+f2 ,

provides the following bound on how many bits are required in the integer part of the
quotient:

Qmax < 2i1+f2 .

Therefore, in the worst case, the quotient will require i1 + f2 integer bits.

Division Result Formats

Unsigned Division
The result of dividing an unsigned fixed point number U(i1, f1) by an
unsigned number U(i2, f2) is a U(i1 + f2, f1 − f2) number.

Mixed Division
The result of dividing two fixed point numbers where one of them is
signed and the other is unsigned is an is an S(i1 + f2, f1 − f2) number.

Signed Division
The result of dividing two signed fixed point numbers is an
S(i1 + f2 +1, f1 − f2) number.

Division Without Losing Precision

The smallest positive value for the dividend is Nmin = 2−f1 , and the largest possible
value of the divisor is Dmax = 2i2 −2−f2 .
In the worst case, the least significant bit of the quotient will be 2−(i2+f1).

Shifting the dividend left by i2 + f2 bits will convert it into a U(i1, i2 + f1 + f2).

When it is divided by a U(i2, f2), the result is a U(i1 + f2, i2 + f1). This is the minimum
size which is guaranteed to preserve all bits of precision.

The general method for performing fixed point division while maintaining maximum
precision is as follows:

1 shift the dividend left by i2 + f2 then

2 perform the division, and

3 use the rules from the previous slide to determine the result format.

Division By a Constant Revisited

Calculate x÷23 using only 8-bit signed integer multiplication.

The reciprocal of 23 is

R= 1
23

= 0.0000101100100001011. . .2 .

If we store R as an S(1,11), it would look like this:

S(1,11)
12

0
11

0
10

0
9

0
8

0
7

0
6

1
5

0
4

1
3

1
2

0
1

0
0

1

Fractional
Part

Radix
Point

Sign

Note that in this format, the reciprocal of 23 has five leading zeros.

We can store more of the significant bits of R by shifting it left to remove some of the
leading zeros.

Division By a Constant Revisited

S(0,11)
11

0
10

0
9

0
8

0
7

0
6

1
5

0
4

1
3

1
2

0
1

0
0

1

Fractional
Part

Radix
Point

Sign

S(−1,11)
10

0
9

0
8

0
7

0
6

1
5

0
4

1
3

1
2

0
1

0
0

1

Fractional
Part

Radix
Point

Sign

S(−2,10) 0
9

0
8

0
7

0
6

1
5

0
4

1
3

1
2

0
1

0
0

1

Fractional
Part

Radix
Point

Sign

Division By a Constant Revisited

S(−3,9) 0 0
8

0
7

0
6

1
5

0
4

1
3

1
2

0
1

0
0

1

Fractional
Part

Radix
Point

Sign

S(−4,8) 0 0 0
7

0
6

1
5

0
4

1
3

1
2

0
1

0
0

1

Fractional
Part

Radix
Point

Sign

We cannot shift any more without changing the sign bit.

Division By a Constant Revisited

An S(7,0) number x multiplied by an S(−4,8) number R will yield an S(4,8) number y.
The value y will be 23 × x

23 because we have three “hidden” bits to the right of the
radix point.

To calculate y= 10110 ÷2310, we can multiply and perform a shift as follows:

. 0 1 1 0 0 1 0 1
× 0 1 0 1 1 0 1 0
0 . 1 1 0 0 1 0 1 0

0 1 1 . 0 0 1 0 1
0 1 1 0 . 0 1 0 1

0 1 1 0 0 1 . 1 1
0 0 1 0 0 1 0 0 . 0 0 0 0 0 0 1 0

The integer portion, 1000112, shifted right three bits, is 1002 = 410.

Division by a Negative Constant

Calculate x÷−9 using 8-bit signed integer multiplication.

−1
9

= −0.000111000111000111000111. . .

= 111. . .11111.111000111000111000111000. . .

We can represent 1
−9 ×22 as the following S(7,8) fixed point number:

S(1,10)
11

1
10

1
9

1
8

1
7

1
6

0
5

0
4

0
3

1
2

1
1

1
0

0

Fractional
Part

Radix
Point

Sign

Note that the upper 5 bits are all one.

Division by a Negative Constant – Part 2

Since the upper 4 bits are all copies of the sign, we don’t need to keep them.

1
−9 in 8 bits, can be represented as an S(−3,8) number R:

S(−3,8) 1 1
7

1
6

0
5

0
4

0
3

1
2

1
1

1
0

0

Fractional
Part

Radix
Point

Sign

Given an S(7,0) number X, R×X will yield an S(7,8) number, such that

Y ×22 =R×X =
(

1
−9

×22
)
×X

Y =R×X ×2−2

Division by a Negative Constant - Example

To calculate Y = 10110 ÷−910, use a signed multiply:

. 1 0 0 0 1 1 1 0
× 0 1 0 1 1 0 0 1

1 1 1 1 1 1 1 1 . 1 0 0 0 1 1 1 0
1 1 1 1 1 1 0 0 . 0 1 1 1 0
1 1 1 1 1 0 0 0 . 1 1 1 0
1 1 1 0 0 0 1 1 . 1 0
1 1 0 1 0 1 0 0 . 0 1 0 1 1 1 1 0

We can immediately throw away the fractional part of the result,
keeping only the upper 8 bits.

110101002 shifted right 2 bits is : 111101012
−(00001010+1)2 =−(8+2+1)10 =−1110.

If the modulus is required, it can be calculated as: 101− (−11×−9)= 2

Implementing Sine and Cosine

cosx= sin π
2−x

sinx is cyclical, so . . .sin−2π= sin0= sin2π This means that we can limit the
domain of our function to the range [−π,π]

sinx is symmetric, so that sin−x=−sinx. This means that we can further
restrict the domain to [0,π].

After we restrict the domain to [0,π], we notice another symmetry,
sinx= sin(π−x), π2 ≤ x≤π and we can further restrict the domain to [0, π2].

the range of both functions, sinx and cosx, is in the range [−1,1].

Write a single shared function, sinq, to be used by both sine and cosine.

sinq will accept x as an S(1,30), and

sinq will return an S(1,30)

Taylor Series

sinx =
∞∑

n=0
(−1)n

x2n+1

(2n+1)!

Only need a few terms to get 30 fractional bits of precision.

All of the factorial terms are constants.

Combine the −1 term with the factorials.

sinx =
∞∑

n=0

−1n

(2n+1)!
x2n+1

= 1
1!

x+ −1
3!

x3 + 1
5!

x5 + −1
7!

x7 + . . .

Pre-compute the constants and store them in a table.

= c0x+c1x3 +c2x5 +c3x7 + . . .

Fixed Point Formats
Each successive power-of-x term must be reduced to 32-bits, or the format would
become unmanageable:

Term Format 32-bit
x S(1,30) S(1,30)
x3 S(3,90) S(3,28)
x5 S(5,150) S(5,26)
x7 S(7,210) S(7,24)
x9 S(9,270) S(9,22)
x11 S(11,330) S(11,20)
x13 S(13,390) S(13,18)
x15 S(15,450) S(15,16)
x17 S(17,510) S(17,14)

Compute x2 at beginning of function.

For each successive term:

Multiply the previous term by x2 (64-bit result)

Discard the lower 32 bits.

Constant Terms

− 1
3!

=−1
6

Convert to binary:

Result

Multiplication Integer Fraction
1
6 ×2= 2

6 0 2
6

2
6 ×2= 4

6 0 4
6

4
6 ×2= 8

6 1 2
6

2
6 ×2= 4

6 0 4
6

8
6 ×2= 8

6 1 2
6

− 1
3!

= −0.0012

= . . .111.1102

Constant Terms (Part 2)

− 1
3!

= −0.0012

= . . .111.1102

S(1,33)
34

1
33

1
32

1
31

1
30

0
29

1
28

0
27

1
26

0
25

1
24

0
23

1
22

0
21

1
20

0
19

1
18

0
17

1
16

0
15

1
14

0
13

1
12

0
11

1
10

0
9

1
8

0
7

1
6

0
5

1
4

0
3

1
2

0
1

1
0

0

Fractional
Part

Radix
Point

Sign

S(−2,32) 1
31

1
30

0
29

1
28

0
27

1
26

0
25

1
24

0
23

1
22

0
21

1
20

0
19

1
18

0
17

1
16

0
15

1
14

0
13

1
12

0
11

1
10

0
9

1
8

0
7

1
6

0
5

1
4

0
3

1
2

0
1

1
0

0

Fractional
Part

Radix
Point

Sign

Table of Constant Terms

Reciprocal Reciprocal

Term Format Value (Hex)

− 1
3! S(−2,32) AAAAAAAA

1
5! S(−6,32) 44444445

− 1
7! S(−12,32) 97F97F97

1
9! S(−18,32) 5C778E96

− 1
11! S(−25,32) 9466EA60

1
13! S(−32,32) 5849184F

− 1
15! S(−40,32) 94603063

1
17! S(−48,32) 654B1DC1

Computing Each Term

Numerator Reciprocal Result

Term Value Format Value Format Hex Format

1 x S(1,30) Extend to 64 bits and shift right S(2,61)

2 x3 S(3,28) − 1
3! S(−2,32) AAAAAAAA S(2,61)

3 x5 S(5,26) 1
5! S(−6,32) 44444444 S(0,63)

4 x7 S(7,24) − 1
7! S(−12,32) 97F97F97 S(−4,64)

5 x9 S(9,22) 1
9! S(−18,32) 5C778E96 S(−8,64)

6 x11 S(11,20) − 1
11! S(−25,32) 9466EA60 S(−13,64)

7 x13 S(13,18) 1
13! S(−32,32) 5849184F S(−18,64)

8 x15 S(15,16) − 1
15! S(−40,32) 94603063 S(−24,64)

9 x17 S(17,14) 1
17! S(−48,32) 654B1DC1 S(−30,64)

Correcting Shifts for Each Term

Term Original Shift Resulting

Number Format Amount Format

1 S(1,30) 1 S(2,61)

2 S(2,61) 0 S(2,61)

3 S(0,63) 2 S(2,61)

4 S(−4,64) 6 S(2,61)

5 S(−8,64) 10 S(2,61)

6 S(−13,64) 15 S(2,61)

7 S(−18,64) 20 S(2,61)

8 S(−24,64) 26 S(2,61)

9 S(−30,64) 32 S(2,61)

C Implementation

1 #define pi 0x3243F6A8 /* pi as an S(3,28) */
2 #define pi_2 0x1921FB54 /* pi/2 as an S(3,28) */
3 #define pi_x2 0x6487ED51 /* 2*pi as an S(3,28) */
4

5 #define TABSIZE 6 /* use first 7 terms of Taylor series */
6 struct tabentry{int coeff; int shift;};
7 const static struct tabentry sintab[TABSIZE]={
8 {0xAAAAAAAA, 0}, {0x44444445, 2}, {0x97F97F97, 6},
9 {0x5C778E96, 10}, {0x9466EA60, 15}, {0x5849184F, 20}};

10

11 /* sinq does all of the real work. x is S(1,30) */
12 static int sinq(int x)
13 { long long sum = (long long)x << 31; /* initialize running total S(2,61) */
14 long long xsq = ((long long)x*(long long)x)>>31;/*calculate x^2 S(2,28) */
15 long long curpower = x; /* curpower holds x^(2n+1) S(1,30) */
16 long long tmp; /* tmp holds each term as it is computed S(2,61) */
17 int i=0;
18 do {
19 curpower = ((curpower * xsq) >> 31); /* calculate x^(2n+1) S(1,30) */
20 tmp = curpower * sintab[i].coeff; /* calculate term */
21 if(tmp < 0) /* adjust for round-off */
22 tmp++; /* if term is negative */
23 tmp >>= sintab[i].shift; /* shift to align radix S(2,61) */
24 sum += tmp; /* add to running total S(2,61) */
25 } while(++i<TABSIZE); /* repeat 5 more times */
26 return (sum >> 33); /* shift and truncate to S(3,28) */
27 }

C Implementation

1

2 /* fixed_sin_C(S(3,28) x) calculates sine of x*/
3 int fixed_sin_C(int x)
4 {
5 while(x<0) x += pi_x2;
6 while(x>pi_x2) x -= pi_x2;
7 if(x<=pi_2) return sinq(x<<2);
8 if(x<=pi) return sinq((pi-x)<<2);
9 if(x<=(pi+pi_2)) return -sinq((x-pi)<<2);

10 return -sinq((pi_x2 -x)<<2);
11 }
12

13 /* fixed_cos_C(S(3,28) x) calculates cosine of x */
14 int fixed_cos_C(int x)
15 {
16 while(x<0) x += pi_x2;
17 x = pi_2 - x;
18 return fixed_sin(x);
19 }

Assembly Implementation

1 @@***
2 @@ Name: sincos.S
3 @@ Author: Larry Pyeatt
4 @@ Date: 2/22/2014
5 @@***
6 @@ This is a version of the sin/cos functions that uses
7 @@ symmetry to enhance precision. The actual sin and cos
8 @@ routines convert the input to lie in the range 0 to pi/2,
9 @@ then pass it to the worker routine that computes the

10 @@ result. The result is then converted back to correspond
11 @@ with the original input.
12 @@ We calculate sin(x) using the first seven terms of the
13 @@ Taylor Series: sin(x) = x - x^3/3! + x^5/5! - x^7/7! +
14 @@ x^9/9! - ... and we calculate cos(x) using the
15 @@ relationship: cos(x) = sin(pi/2-x)
16 @@ We start by defining a helper function, which we call sinq.
17 @@ The sinq function calculates sin(x) for 0<=x<=pi/2. The
18 @@ input, x, must be an S(1,30) number. The factors of x that
19 @@ sinq will use are: x, x^3, x^5, x^7, x^9, x^11, and x^13.
20 @@ Dividing by (2n+1)! is changed to a multiply by a
21 @@ coefficient as we compute each term, we will add it to the
22 @@ sum, stored as an S(2,61). Therefore, we want the product
23 @@ of each power of x and its coefficient to be converted to
24 @@ an S(2,61) for the add. It turns out that this just
25 @@ requires a small shift.
26 @@ We build a table to decide how much to shift each product
27 @@ before adding it to the total. x^2 will be stored as an

Assembly Implementation

1 @@ S(2,29), and x is given as an S(1,30). After multiplying
2 @@ x by x^2, we will shift left one bit, so the procedure is:
3 @@ x will be an S(1,30) - multiply by x^2 and shift left
4 @@ x^3 will be an S(3,28) - multiply by x^2 and shift left
5 @@ x^5 will be an S(5,26) - multiply by x^2 and shift left
6 @@ x^7 will be an S(7,24) - multiply by x^2 and shift left
7 @@ x^9 will be an S(9,22) - multiply by x^2 and shift left
8 @@ x^11 will be an S(11,20)- multiply by x^2 and shift left
9 @@ x^13 will be an S(13,18)- multiply by x^2 and shift left

10 @@
11 @@ The following table shows the constant coefficients
12 @@ needed for calculating each term.
13 @@ -1/3! = AAAAAAAA as an S(-2,32)
14 @@ 1/5! = 44444445 as an S(-6,32)
15 @@ -1/7! = 97F97F97 as an S(-12,32)
16 @@ 1/9! = 5C778E96 as an S(-18,32)
17 @@ -1/11! = 9466EA60 as an S(-25,32)
18 @@ 1/13! = 5849184F as an S(-32,32)
19 @@
20 @@ Combining the two tables of power and coefficient formats,
21 @@ we can now determine how much shift we need after each
22 @@ step in order to do all sums in S(2,61) format:
23 @@ power powerfmt coef coeffmt resultfmt right shift
24 @@ x S(1,30) * 1 (skip the multiply) 1 -> S(2,61)
25 @@ x^3 S(3,28) * -1/3! S(-2,32) = S(2,61) 0 -> S(2,61)
26 @@ x^5 S(5,26) * 1/5! S(-6,32) = S(0,63) 2 -> S(2,61)
27 @@ x^7 S(7,24) * -1/7! S(-12,32) = S(-4,64) 6 -> S(2,61)

Assembly Implementation

1 @@ x^9 S(9,22) * 1/9! S(-18,32) = S(-8,64) 10-> S(2,61)
2 @@ x^11 S(11,20) * -1/11! S(-25,32) = S(-13,64) 15-> S(2,61)
3 @@ x^13 S(13,18) * 1/13! S(-32,32) = S(-18,64) 20-> S(2,61)
4

5 .data
6 .align 2
7 @@ We will define a few constants that may be useful
8 .global pi
9 pi: .word 0x3243F6A8 @ pi as an S(3,28)

10 .global pi_2
11 pi_2: .word 0x1921FB54 @ pi/2 as an S(3,28)
12 .global pi_x2
13 pi_x2: .word 0x6487ED51 @ 2*pi as an S(3,28)
14

15 sintab: @@ This is the table of coefficients and shifts
16 .word 0xAAAAAAAA, 0 @ -1/3! as an S(-2,32)
17 .word 0x44444445, 2 @ 1/5! as an S(-6,32)
18 .word 0x97F97F97, 6 @ -1/7! as an S(-12,32)
19 .word 0x5C778E96, 10 @ 1/9! as an S(-18,32)
20 .word 0x9466EA60, 15 @ -1/11! as an S(-25,32)
21 .word 0x5849184F, 20 @ 1/13! as an S(-32,32)
22 .equ tablen,(.-sintab) @ set tablen to the size of table.
23 @@ The ’.’ refers to the current address counter value.
24 @@ Subtracting the address of sintab from the current
25 @@ address gives the size of the table.

Assembly Implementation

1 .text
2 @@---
3 @@ sinq(x)
4 @@ input: x -> S(1,30) s.t. 0 <= x <= pi/2
5 @@ returns sin(x) -> S(1,30)
6 sinq: stmfd sp!,{r4-r11,lr}
7 smull r2,r4,r0,r0 @ r4 will hold x^2.
8 @@ The first term in the Taylor series is simply x, so
9 @@ convert x to an S(2,61) by doing an asr in 64 bits,

10 @@ and use it to initialize the sum.
11 mov r10, r0,lsl #31 @ low 32 bits of sum
12 mov r11, r0,asr #1 @ high 32 bits of sum
13 @@ r11:r10 now contains the sum (currently x) as an S(2,61)
14 @@ We are going to convert x^2 to an S(2,28), and round it
15 adds r2,r2,#0x40000000 @ Round x^2 up by adding 1 to
16 @ the first bit that will be lost.
17 adccs r4,r4,#0 @ Propagate the carry.
18 lsl r4,r4,#1 @ Make room for one bit in LSB
19 orr r4,r4,r2,lsr#31 @ Copy least significant bit of x^2
20 @@ r4 now contains x^2 as an S(2,28)
21 mov r5,r0 @ r5 will keep x^(2n-1).
22 @@ r5 now contains x as an S(1,30)
23 @@ The multiply will take time, and on some processors,
24 @@ there is an extra clock cycle penalty if the next
25 @@ instruction requires the result, so do the multiply now.
26 smull r0,r5,r4,r5 @ r5:r0 <- x^(2n+1) as an S(4,59)
27 ldr r6, =sintab @ get pointer to beginning of table

Assembly Implementation

1 add r7, r6, #tablen @ get pointer to end of table
2 @@ We know that we will always execute the loop 6 times,
3 @@ so we use a post-test loop.
4 sloop: ldmia r6!,{r8,r9} @ Load two values from the table
5 @@ r8 now has (-1^n)/(2n+1)!
6 @@ r9 contains the correcting shift
7 @@ the previous smull r0,r5,r4,r5 should be complete soon
8 lsl r5,r5,#1 @ Shift and copy the m.s. bit of the
9 orr r5,r5,r0,lsr#31 @ LSW to l.s. bit of MSW -> S(3,60)

10 @@ r5 now contains x^(2n+1) as an S(3,60)
11 @@ Start next multiply now
12 smull r0,r1,r5,r8 @ multiply by reciprocal that we
13 @ loaded earlier (5 cycles)
14 @@ Apply correcting right shift to make an S(2,61).
15 @@ Note: r9 was loaded from the table earlier.
16 rsb r2,r9,#32 @ calculate inverse shift amount
17 lsr r0,r0,r9 @ Make room in low word for bits
18 orr r0,r0,r1,lsl r2 @ paste bits into low word
19 asr r1,r1,r9 @ shift upper word right
20 @@ accumulate result in r10:r11
21 adds r10,r10,r0
22 adc r11,r11,r1
23 @@ check to see if there is another term to compute
24 cmp r6, r7
25 @@ Start next multiply now
26 smulllt r0,r5,r4,r5 @ r5:r0 <- x^(2n+1) as an S(4,59)
27 @@ The multiply will take three cycles, so start it now

Assembly Implementation

1 blt sloop @ Repeat for every table entry
2 @@ shift result left 1 bit and move MSW to r0
3 lsl r11,r11,#1
4 orr r0,r11,r10,lsr #31
5 @@ return the result
6 ldmfd sp!,{r4-r11,pc}
7

8

9

10 @@---
11 @@ cos(x) NOTE: The cos(x) function does not return.
12 @@ It is an alternate entry point to sin(x).
13 @@ input: x -> S(3,28)
14 @@ returns cos(x) -> S(3,28)
15 .global fixed_cos
16 fixed_cos:
17 ldr r1,=pi_x2 @ load pointer to 2*pi
18 ldr r1,[r1] @ load 2*pi
19 cmp r0,#0 @ Add 2*pi to x if needed, to make
20 addle r0,r0,r1 @ sure x does not become too small
21 cosgood:ldr r1,=pi_2 @ load pointer to pi/2
22 ldr r1,[r1] @ load pi/2
23 sub r0,r1,r0 @ cos(x) = sin(pi/2-x)
24 @@ now we just fall through into the sin function

Assembly Implementation

1 @@---
2 @@ sin(x)
3 @@ input: x -> S(3,28)
4 @@ returns sin(x) -> S(3,28)
5 .global fixed_sin
6 fixed_sin:
7 stmfd sp!,{lr}
8 ldr r1,=pi_2 @ r1 has pointer to pi/2
9 ldr r2,=pi @ r2 has pointer to pi

10 ldr r3,=pi_x2 @ r3 has pointer to pi*2
11 ldr r1,[r1] @ r1 has pi/2
12 ldr r2,[r2] @ r2 has pi
13 ldr r3,[r3] @ r3 has pi*2
14 @@ step 1: make sure x>=0.0 and x<=2pi
15 negl: cmp r0,#0 @ while(x < 0)
16 addlt r0,r0,r3 @ x = x + 2 * pi
17 blt negl @ end while
18 nonneg: cmp r0,r3 @ while(x > pi/2)
19 subgt r0,r0,r3 @ x = x - 2 * pi
20 bgt nonneg @ end while
21 @@ step 2: find the quadrant and call sinq appropriately
22 inrange:cmp r0,r1
23 bgt chkq2
24 @@ it is in the first quadrant... just shift and call sinq
25 lsl r0,r0,#2
26 bl sinq
27 b sin_done

Assembly Implementation

1 chkq2: cmp r0,r2
2 bgt chkq3
3 @@ it is in the second quadrant... mirror, shift, and call
4 @@ sinq
5 sub r0,r2,r0
6 lsl r0,r0,#2
7 bl sinq
8 b sin_done
9 chkq3: add r1,r1,r2 @ we will not need pi/2 again

10 cmp r0,r1 @ so use r1 to calculate 3pi/2
11 bgt chkq4
12 @@ it is in the third quadrant... rotate, shift, call sinq,
13 @@ then complement the result
14 sub r0,r0,r2
15 lsl r0,r0,#2
16 bl sinq
17 rsb r0,r0,#0
18 b sin_done
19 @@ it is in the fourth quadrant... rotate, mirror, shift,
20 @@ call sinq, then complement the result
21 chkq4: sub r0,r0,r2
22 sub r0,r2,r0
23 lsl r0,r0,#2
24 bl sinq
25 rsb r0,r0,#0

Assembly Implementation

1 sin_done:
2 @@ shift result right 2 bits
3 asr r0,r0,#2
4 @@ return the result
5 ldmfd sp!,{pc}
6 @@---

Performance

Optimization Implementation CPU seconds

None 32-bit Fixed Point Assembly 3.85
32-bit Fixed Point C 18.99
Single Precision Software Float C 56.69
Double Precision Software Float C 55.95
Single Precision VFP C 11.60
Double Precision VFP C 11.48

Full 32-bit Fixed Point Assembly 3.22
32-bit Fixed Point C 5.02
Single Precision Software Float C 20.53
Double Precision Software Float C 54.51
Single Precision VFP C 3.70
Double Precision VFP C 11.08

Patriot Missile Failure

On February 25, 1991, during the Gulf War, an American Patriot Missile battery
in Dharan, Saudi Arabia, failed to track and intercept an incoming Iraqi Scud
missile.

The Scud struck an American Army barracks, killing 28 soldiers and injuring
around 98 other people.

The cause was an inaccurate calculation of the time since boot. arithmetic errors

The time in tenths of second as measured by the system’s internal clock was
multiplied by 1

10 to produce the time in seconds.

This calculation was performed using a U(0,24) fixed point representation.

The small error, when multiplied by the large number giving the time in tenths
of a second, led to a significant error.

Patriot Missile Failure - Continued

The Patriot battery had been up for around 100 hours, and an easy calculation
shows that the resulting time error due to the magnified chopping error was
about 0.34 seconds.

The binary expansion of 1
10 is 0.00011

The 24 bit register in the Patriot stored 0.00011001100110011001100
introducing an error of 0.0000000000000000000000011002 or about
0.00000009510

Multiplying by the number of tenths of a second in 100 hours gives
0.000000095×100×60×60×10= 0.34.

A Scud travels at about 1,676 meters per second, and so travels more than half a
kilometer in 0.34 seconds.

This was far enough that the incoming Scud was outside the “range gate” that
the Patriot tracked.

PEOPLE DIED

Floating Point – Half Precision

Sometimes we need more range than we can get from fixed precision.

IEEE has set standards for various floating point formats.

IEEE 754 Half-Precision
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s e4 e3 e2 e1 e0 m9 m8 m7 m6 m5 m4 m3 m2 m1 m0

Exponent Significand
Sign

The Significand (a.k.a. “Mantissa” or “Fractional Part”) is in sign-magnitude
coding, with bit 15 being the sign bit.

There are 10 bits of significand, but there are 11 bits of significand precision.
There is a “hidden” bit, m10, between m9 and e0.

The exponent is an excess-15 number. i.e. The number stored is 15 greater than
the actual exponent.

Floating Point – Half Precision Examples

IEEE 754 Half-Precision
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1

Exponent Significand
Sign

+1.1000101011×201010−01111 = 1.1000101011×2−5 = .000011000101011

≈ 0.0481910

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1

−1.0000100101×211000−01111 =−1.0000100101×29 =−1000010010.1

=−530.510

Floating Point – Half Precision Special Values

The exponents 000002 and 111112 have special meaning.

Exponent Significand = 0 Significand 6= 0 Equation

00000 ±0 subnormal −1sign ×2−14 ×0.significand
00001, . . . , 11110 normalized value −1sign ×2exponent−15 ×1.significand

11111 ±∞ NaN

Subnormal means that the value is too close to zero to be completely normalized.

The minimum strictly positive (subnormal) value is 2−24 ≈ 5.96×10−8.

The minimum positive normal value is 2−14 ≈ 6.10×10−5.

The maximum exactly representable value is (2−2−10)×215 = 65504.

Floating Point – More Precision

IEEE 754 Single-Precision
31 30 29 28 27 26 25 24 23 22 21 20 . . . 2 1 0

s e7 e6 e5 e4 e3 e2 e1 e0 m22 m21 m20 . . . m2 m1 m0

Exponent Significand
Sign

IEEE 754 Double-Precision
63 62 61 60 . . . 54 53 52 51 50 49 48 . . . 2 1 0

s e9 e8 e7 . . . e2 e1 e0 m51 m50 m49 m48 . . . m2 m1 m0

Exponent Significand
Sign

IEEE 754 Quad-Precision
127 126 125 124 . . . 114 113 112 111 110 109 108 . . . 2 1 0

s e13 e12 e11 . . . e3 e2 e1 m111m110m109m108 . . . m2 m1 m0

Exponent Significand
Sign

Many processors do not have hardware support for floating point.

Floating Point Addition and Subtraction

The basic algorithm is the same for floats of all sizes.

1 Extract the exponents Ea and Eb.

2 Extract the significands Ma and Mb. and convert them into 2’s complement
numbers, using the signs Sa and Sb.

3 Shift the significand with the smaller exponent right by |Ea −Eb|.
4 Perform addition (or subtraction) on the significands to get the significand of the

result, Mr. Remember that the result may require one more significant bit to
avoid overflow.

5 If Mr is negative, then take the 2’s complement and set Sr to 1. Otherwise set Sr
to 0.

6 Shift Mr until the leftmost 1 is in the “hidden” bit position, and add the shift
amount to the smaller of the two exponents to form the new exponent Er.

7 Combine the sign Sr, the exponent Er, and significand Mr to form the result.

Floating Point Multiplication and Division

The basic algorithm is the same for floats of all sizes.

1 Calculate the sign of the result Sr.

2 Extract the exponents Ea and Eb.

3 Extract the significands Ma and Mb.

4 Multiply (or divide) the significands to form Mr.

5 Add (or subtract) the exponents (in excess-N) to get Er.

6 Shift Mr until the leftmost 1 is in the “hidden” bit position, and add the shift
amount to Er.

7 Combine the sign S, the exponent Er, and significand Mr to form the result.

Summary

The two common ways to represent non-integral numbers in a computer
are

fixed point and

floating point.

Fixed point is a way to perform calculations on non-integral numbers
using only integer operations.

Floating point allows the radix point to be tracked automatically, but
requires much more complex software and/or hardware.

Fixed point will usually provide better performance than floating point,
but requires more programming skill.

Fractions which terminate in base two will also terminate in base ten,
but the converse is not true.

Programmers should avoid counting using fractions which do not
terminate in base two, because it leads to the accumulation of round-off
errors.

	Base Conversion of Nonintegral Numbers
	Fixed Point Calculations
	Fixed Point Multiplication and Division
	Fixed Point Sine and Cosine
	Floating Point
	Algorithms for Floating Point
	Algorithms for Floating Point

